31. If
$$A = \begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix}$$
, $B = \begin{bmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{bmatrix}$ and if A is invertible,

then which of the following is not true?

a.
$$|A| = |B|$$

b.
$$|A| = -|B|$$

c.
$$|adj A| = |adj B|$$

d. A is invertible if and only if B is invertible

31. a.
$$|B| = \begin{vmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{vmatrix}$$
 (Multiplying R_2 by -1)
$$= -\begin{vmatrix} q & -b & y \\ p & -a & x \\ r & -c & z \end{vmatrix}$$
 (Multiplying C_2 by -1)
$$= \begin{vmatrix} q & b & y \\ p & a & x \\ r & c & z \end{vmatrix}$$
 (Changing R_1 with R_2)
$$= -\begin{vmatrix} p & a & x \\ q & b & y \\ r & c & z \end{vmatrix}$$

$$= -\begin{vmatrix} a & x & p \\ b & y & q \\ c & z & r \end{vmatrix}$$

Hence |A| = -|B|, obviously when $|A| \neq 0$, $|B| \neq 0$. Also, $|A| = |B|^2 = (-|A|)^2 = |A|^2$.